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AbyU Studies

Proposed Biosynthesis2

• Abyssomicin C (1) is a polyketide derived spirotetronate isolated from the marine microorganism Verrucosispora maris.
• It is a potent inhibitor of Gram-positive bacteria such as MRSA (MIC = 4 μg/mL) and VRSA (MIC = 13 μg/mL).
• It mimics chorismate and so inhibits the pABA/tetrahydrofolate biosynthetic pathway, making it an attractive target for novel antibiotics.1

• In this project, we aim to elucidate the structures of key enzymes involved in the biosynthesis of 1 and investigate their use as biocatalysts in
for the preparation of novel bioactive compounds.

Background

Conclusions and Future Work

AbyU crystals Crystal structure of AbyU Active site of AbyU

• Diels-Alder (DA) reactions are typically conducted in heat or Lewis acid-mediated reactions.
• AbyU was isolated and characterised as a homodimer containing 8-stranded antiparallel β-barrels.
• Protected tetronate 18 was synthesised in order to assess enzyme function of AbyU.
• AbyU catalyses the [4+2] cycloaddition of substrate 18 to spirotetronate 19.
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AbyA5 Studies

AbyA5 crystal Crystal structure of AbyA5 AbyA5 active site

• Few enzymes have been reported for acetate elimination.3,4

• DNA sequence of wildtype AbyA5 was transformed into E. coli for protein expression.
• AbyA5 structure was determined and it retains an alpha/beta hydrolase catalytic triad, with

serine, histidine and aspartic acid residues housed in the active site.

• Tetronic acids R-10 and S-10 were synthesised from D-mannitol (7) in order to investigate the
function and stereospecificity of AbyA5.5
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• Tetronic acids R-10 and S-10 were incubated separately with AbyA5 in pH 7.5 Tris-HCl buffer at 25
°C for 30 minutes. Only R-10 was converted to tetronate 13.

• A standard of 13 was synthesised in 6 steps from commercially available lactone 11 via formation
of the exo-methylene on tetronate 12.

kcat = 1.8 ± 0.1 min-1

KM = 26.8 ± 8.1 μM
kcat/KM = 0.07 ± 0.01 min-1 μM-1

(R)-10 μM

• Enzymes AbyA5 and AbyU were successfully isolated and characterised using X-ray crystallography.
• Incubation of tetronic acids R-10 and S-10 with AbyA5 confirmed the function and stereospecificity of the enzyme, with R-10 giving 13 exclusively.
• AbyU efficiently catalyses the DA reaction of linear tetronate 18 to spirotetronate 19.
• Computational studies reveal contortion of linear substrate 18 within the AbyU active site to facilitate the [4+2] cycloaddition.
• Investigations into AbyU promiscuity and development into a biocatalyst are ongoing.

Feeding studies to determine building blocks to 1.

• Synthesis of tetronate 18 was conducted from commercially available alcohol 14 to give
intermediate lactone 16 which was subsequently transformed to the linear tetronate 18.

• Synthetic standard of spirotetronate 19 was synthesised by heat mediated cyclisation of 18.

• Incubation of 18 with AbyU in pH 7.5 Tris-HCl buffer at 25 °C for 30 minutes gave 19.
• The enzymatic reaction accelerates the transformation >40,000 times.6
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