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The carboxylate moiety is prevalent in nature, and a wide 
 range of biologically active drugs and bioactive compounds 
are carboxylic acids or derivatives. However, the incorpor ation 
of a carboxylic function in a selective manner, from low- value 
materials such as alkenes, remains a significant challenge 
for organic chemists. In particular, sustainable and straight-
forward methods for selective carboxylation are under-
developed. Dr. Benjamin Buckley, Professor Andrei Malkov 
and team from Loughborough University (UK) have recently 
reported a new electrosynthetic approach to the selective 
β-hydrocarboxylation of alkenes with inexpensive and abund-
ant carbon dioxide, thus avoiding the use of toxic, flammable 
carbon monoxide that is the current reagent of choice for this 
purpose. The reported method allows direct access to carbox-
ylic acids derived from terminal, di-, tri-, and tetra-substi-
tuted alkenes, in a highly regioselective manner. Interestingly, 
the authors observed a selectivity which is opposite to that 
reported utilizing transition-metal complexes1 and comple-
mentary to the photochemical approaches reported to date.2 

Dr. Buckley noted: “There are a number of electrochemi-
cal processes reported that allow for CO2 incorporation into 
organic molecules. In the majority of cases, these rely on a 
sacrificial electrode – such as magnesium – and this presents 
several difficulties, including the limited sustainability of the 
approach, the challenges in translation to industrial applica-
tions and implementation of continuous processes.” 

After reporting the use of a sacrificial electrode system 
for the formation of cyclic carbonates from epoxides and oxe-
tanes, the team set themselves the target of developing a non-
sacrificial electrochemical system in which they could utilize 
CO2.3 “This was inspired by our unpublished findings on the 
nature of a precipitate that we observed during the original cy-
c lic carbonate reaction,” explained Dr. Buckley. He con tinued: 
“Depending on the sacrificial electrode em ployed, we could 
isolate oxalic acid (after acidic work-up) and this now be came 
really interesting from a C–C bond-forming point of view. Our 
interest increased even further following the publi cation of a 
paper by Bouwman and co-workers highlighting the impor-
t ance of catalysts for oxalate synthesis.4” Prof.  Malkov,  Dr. 
 Buckley and co-workers eventually found that this was not a 
unique process, as there was a precedent reported more than 
two decades before by Vasil’ev, although at much higher tem-

perature and pressure. In that interesting paper, the authors 
also added ethylene and observed C–C bond formation.5 “We 
adapted our process and added styrene, which provided good 
yields of dicarboxylation across the double bond, similar to 
that reported by Duñach,6” said Dr. Buckley. From that point, 
the team implemented a regime to replace the sacrificial elec-
trode, finally settling on a system that contained two carbon 
electrodes, tetraethylammonium iodide as electrolyte, and 
triethanolamine as a proton source with CO2 at ambient pres-
sure (Scheme 1A). Dr. Buckley remarked: “Surprisingly, under 
these conditions, we observed mono-carboxylation at the 
β-carbon of styrene, and not dicarboxyl ation. On further in-
vestigation we found that triethanolamine is essential for se-
lectivity and a recent report has highlighted triethanolamine’s 
non-innocent role in activating CO2. Exciting ly, further sub-
strate screening revealed that our system works well for sub-
strates that previously were challenging for metal-catalyzed 
and photochemical ap proaches. For example, we could suc-
cessfully carboxylate stilbenes, tri- and tetra-substituted 
 alkenes (Scheme 1B). This  gives unprecedented access to all-
carbon quaternary carbox ylic acids, which are also challen-
ging to prepare using the traditional metal-catalyzed carbon-
ylation processes.7” 

Delineating the mechanism of these reactions is somewhat 
challenging given the similar reduction potentials of alkenes 
and CO2 (Scheme 1C). Dr. Buckley said: “Collaboration with 
the Wright group enabled cyclic voltammetric analysis of the 
reaction process indicating formation of the radical anion of 
the alkene as a preferred approach, indeed we also observed 
the ring opening of a cyclopropane-derived alkene, suggesting 
the formation of a radical at the benzylic position. However, 
further studies in this area are required to fully understand 
the process.”

Dr. Buckley concluded: “We are currently examining the 
potential of this approach to a wide variety of carboxylation 
chemistries and expect this to inspire many other electrosyn-
thetic approaches that will no longer need to rely on a sacrifi-
cial electrode approach.”
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Scheme 1  (A) General approach to the hydrocarboxylation process. (B) Example products from the process. (C) Postulated routes 
towards the mono-carboxylated products. 
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