Abstracts

2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides

| Hannedouche |

The topic of this update is rare earth metal catalyzed hydroamination reactions. This chapter covers the syntheses and catalytic applications of rare-earth complexes in the direct addition of an amine onto unactivated carbon—carbon triple and double bonds, the so-called hydroamination reaction. The relevant literature up until mid-2012 is covered.

Keywords: hydroamination \cdot rare-earth complexes \cdot asymmetric catalysis \cdot salt metathesis \cdot silylamine or alkane elimination \cdot C=C bonds \cdot C=C bonds \cdot C=N bonds \cdot amines \cdot nitrogen heterocycles \cdot chiral compounds

18.3.7 **Carbonic Acid Halides** *R. A. Aitken and Y. Boubalouta*

This chapter is an update to the earlier *Science of Synthesis* contribution on carbonic acid halides and concentrates on compound classes not adequately covered in the earlier contribution, especially mixed carbonyl dihalides, alkyl fluoroformates, halocarbonylsulfenyl halides, and carbamoyl fluorides.

Keywords: alkyl fluoroformates \cdot bromine compounds \cdot carbamoyl fluorides \cdot carbon—halogen bonds \cdot chlorine compounds \cdot fluorine compounds \cdot halocarbonylsulfenyl halides \cdot iodo compounds \cdot mixed carbonyl dihalides

p 161

Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues

R. Zimmer and D. Trawny

This chapter is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of acyclic and cyclic carbonic acid derivatives, and their sulfur, selenium, and tellurium analogues. It is mainly focused on the literature published in the period 2005–2012. Moreover, special focus is given to the application of the title compounds.

Keywords: carbonates \cdot formates \cdot chloroformates \cdot thiocarbonyl compounds \cdot dithiocarbonates \cdot selenium compounds \cdot green chemistry \cdot coupling reactions \cdot carbon—oxygen bonds

This chapter is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of β , γ -unsaturated ketones. It focuses on the literature published from 2004, although some earlier methods which were absent from the original contribution are included.

Keywords: β , γ -unsaturated ketones \cdot oxidation \cdot allylation \cdot vinylation \cdot transition-metal catalysis \cdot cross coupling \cdot hydration dimerization

- p 243 —

26.12

Product Class 12: Seven-Membered and Larger-Ring Cyclic Ketones

Product Class 12: Seven-Membered and Larger-Ring Cyclic Retones
P. J. H. Scott

This chapter describes methods for the synthesis of cycloheptanones and larger-ring cyclic ketones. General methods for the synthesis of such compounds are highlighted in the introduction. The chapter then describes principal routes to cyclic ketones with an emphasis on those approaches that generate the ring of the cyclic ketone. Strategies covered include intramolecular cyclization reactions, cycloaddition reactions, and methods for ring enlargement.

Keywords: cycloheptanones \cdot ketones \cdot cyclic compounds \cdot Ziegler cyclization \cdot acyloin condensation \cdot intramolecular reactions \cdot ring-closing metathesis \cdot Heck reactions \cdot cycloaddition reactions \cdot pinacol rearrangement \cdot ring enlargement \cdot electrocyclic reactions

- p 301 —

Product Class 13: α -Aryl and α -Hetaryl Ketones

J. C. Collings

This chapter outlines many of the methods used to synthesize α -aryl ketones and α -hetaryl ketones. Attention is focused on transition-metal-catalyzed cross-coupling reactions of (het)aryl halides and pseudohalides with ketones and ketone derivatives, which are particularly useful for enantioselective synthesis, but other methods such as nucleophilic aromatic substitutions are also discussed.

$$\begin{array}{c} \text{Ni(cod)}_2 \\ \text{(R)-DIFLUORPHOS} \\ \text{**} \\ \text$$

Keywords: α -aryl ketones \cdot α -hetaryl ketones \cdot nucleophilic substitution \cdot transition-metal catalysis \cdot cross-coupling reactions \cdot monophosphines \cdot bisphosphines \cdot N-heterocyclic carbenes \cdot enantioselectivity \cdot C—C bond formation

32.4.3 Haloalkenes

B. Egart and C. Czekelius

This chapter is an update to the earlier *Science of Synthesis* contribution describing general synthetic methods to access fluoroalkenes. This update addresses new developments as well as transformations that were not covered in the original contribution.

Keywords: activation of C—F bonds \cdot alkenation \cdot alkenes \cdot carbon—halogen bonds \cdot dehalogenation \cdot dehydrohalogenation \cdot elimination \cdot fluorination \cdot fluorine compounds \cdot halo addition reactions \cdot halogenation

34.9.2 β-Fluoro Alcohols *J. A. Kalow and A. G. Doyle*

© Georg Thieme Verlag KG

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of β -fluoro alcohols. It focuses on the literature published in the period 2005–2012. Routes discussed include epoxide opening by fluoride, reduction of α -fluoro ketones, fluoromethylation of aldehydes, and hydroxyfluorination of alkenes. Special attention is given to the stereoselective synthesis of β -fluoro alcohols.

Keywords: alkene hydroxyfluorination \cdot asymmetric synthesis \cdot carbon—halogen bonds \cdot carbonyl fluoromethylation \cdot desulfonylation \cdot epoxide ring opening \cdot fluorides \cdot fluorine compounds \cdot β -fluoro alcohols \cdot stereoselective synthesis \cdot transfer hydrogenation