Abstracts

5.1.1.8 **Germanium Hydrides**A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of germanium hydrides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot hydrides \cdot germyl hydride \cdot germanium hydride \cdot radical reduction \cdot hydrogermylation \cdot germylation \cdot tris(2-furyl)germane \cdot cross coupling \cdot germyl cation

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of germanium cyanides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot cyanides \cdot cyanation \cdot halides \cdot silver \cdot germole

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of acylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot enol ethers \cdot [2+2] cycloaddition \cdot azetidines \cdot BINAP \cdot alkynes \cdot carbonylation \cdot furans \cdot radicals \cdot polymerization \cdot amides

A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of α -halo- and α -alkoxyvinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

 R^4 = Ph, CH=CHPh, CH=CMe₂; X = Br, I

Keywords: germanes \cdot germanium compounds \cdot substitution \cdot hydrometalation \cdot carbometalation \cdot halogenation \cdot alkynes \cdot germatranes \cdot desulfonylation \cdot cross coupling \cdot palladium(0) \cdot styrenes

Abstracts IX

$$2010$$
 p 27 — 5.1.19.7 α-Halo-, α-Hydroxy,- α-Alkoxy-, and α-Aminoalkylgermanes A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of α -halo-, α -hydroxy-, α -alkoxy-, and α -aminoalkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot [1,2] rearrangements \cdot oxo-carbenium \cdot oxonium \cdot substitution \cdot hydroboration \cdot boronic ester \cdot [3+2] cycloaddition \cdot germenes \cdot silylation \cdot borylation

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of alkynylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot alkynes \cdot [3+2] cycloadditions \cdot hydrostannylation \cdot hydroboration \cdot cross coupling \cdot palladium(0) \cdot substitution \cdot cross metathesis \cdot elimination \cdot Pauson–Khand reaction \cdot cyclopentenones

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of aryl- and heteroarylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

$$\begin{array}{c} \text{hv, Cu(BF_4)_2} \\ \text{MeOH/MeCN} \\ \text{Pyrex tube} \end{array} \qquad \begin{bmatrix} \text{F} \\ \text{R}^1 \end{bmatrix}$$

$$\begin{array}{c} \text{PdCl}_2(\text{NCMe})_2 \\ (2\text{-Tol})_3\text{P, Ar}^2\text{Br} \\ \text{TBAF, CuI} \\ \text{DMF, 120 °C} \end{array}$$

Keywords: germanes \cdot germanium compounds \cdot cross coupling \cdot Stille reaction \cdot Hiyama–Denmark reaction \cdot substitution \cdot Barbier conditions \cdot transmetalation \cdot cycloaddition \cdot solid-phase synthesis \cdot traceless linkers

A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of vinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes \cdot germanium compounds \cdot vinylgermanes \cdot alkenylgermanes \cdot β -effect \cdot hyperconjugation \cdot hydrogermylation \cdot heterogermylation \cdot metallogermylation \cdot cross coupling \cdot germatranes

ΧI **Abstracts**

2010 Propargyl- and Allenylgermanes 5.1.24.4

A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of propargyl- and allenylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · propargylgermanes · allenylgermanes · transmetalation · Grignard reagents · [2+2] cycloaddition

- p63 — 2010 -

5.1.25.3 **Benzylgermanes**

A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · benzylgermanes · cross coupling · boscalid

2010 —— р 69 —

5.1.26.6 Allylgermanes

A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of allylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · alkenylgermanes · allylation · ger $mylene \cdot \pi$ -allylpalladium(0) · metallogermanes · Baylis-Hillman · germyl radicals

2010 p 77 — **5.1.**27.4 **Alkylgermanes** A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of alkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

 $\textbf{Keywords:} \ germanes \cdot germanium \ compounds \cdot alkenylgermanes \cdot ADMET \cdot germylene \cdot hydrogermylation$

<u>2010</u> p 81 — 9.11.4 **Selenophenes**

J. Schatz and M. Seßler

This manuscript is intended to update the first report on the synthesis of selenophenes in *Science of Synthesis* and will briefly summarize essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. During this time, applications of selenophene-based materials in organic electronics and photonics received considerable interest, and selenophene-containing π -conjugated compounds have been proposed as organic magnetic materials.

Keywords: selenophenes \cdot active methylene compounds \cdot selanylenynes \cdot cyclization \cdot aromatization \cdot metal-halogen exchange

Abstracts XIII

9.12.3 **Tellurophenes**J. Schatz and M. Seßler

This manuscript is intended to update the earlier report on the synthesis of tellurophenes in *Science of Synthesis*, and summarizes essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. The decade 2000–2010 saw an increasing interest in organic molecules as functional materials, shifting the focus away from biological or pharmaceutical application. This trend could especially be observed for thiophenes, leading, not surprisingly, also to an increasing pursuit of potential applications of tellurophenes.

Keywords: tellurophenes · tellanylenynes · cyclization · aryl cross coupling

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of isoxazoles (1,2-oxazoles). It focuses on the literature published in the period 2001–2009.

 $\textbf{Keywords:} \ is oxazoles \cdot is oxazol-5-ones \cdot dipolar \ cycloadditions \cdot oximes \cdot nitrile \ oxides \cdot cyclization \cdot multicomponent \ coupling \cdot regions electivity$

2010 11.10.5

1,2-Benzisoxazoles and Related Compounds

S. Härtinger

This update deals with important general methods for the synthesis of 1,2-benzisoxazole derivatives that have not been discussed in the original Section 11.10 or in *Houben–Weyl*, Vol. E 8a. Literature published until 2009 is reviewed.

R1 = alkyl, cycloalkyl, aryl; R2 = alkyl, alkoxy, nitro, acylamino, acyloxy

 $\textbf{Keywords:} \ 1, 2\text{-benzisoxazoles} \cdot cyclization \cdot ring \ closure \cdot coupling \ reactions \cdot aromatization$

— р 153 *—*

p 133 —

11.13 Product Class 13: Benzoxazoles and Other Annulated Oxazoles

M. Schnürch, J. Hämmerle, and P. Stanetty

This manuscript is a revision of the earlier *Science of Synthesis* contribution describing methods for the synthesis of benzoxazoles (benzo[d]oxazoles, 1,3-benzoxazoles) and related compounds such as benzoxazol-2-ones and other heteroannulated derivatives. Classical routes to benzoxazoles involve the intermolecular cyclization of 2-aminophenols or intramolecular cyclization of *N*-phenylcarboxamides, but more recent developments with different approaches are included as well.

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Keywords: benzoxazoles \cdot benzoxazol-2-ones \cdot 2-aminophenols \cdot *N*-phenylcarboxamides \cdot cyclization \cdot annulation \cdot Beckmann rearrangement

XV **Abstracts**

p 207 — 2010 11.15.4 **Isothiazoles**

M. Sainsbury

This manuscript is an update to the earlier Science of Synthesis contribution describing the syntheses of isothiazoles and, in particular, advances in classical methods. Applications of well-known coupling methods to isothiazoles are also illustrated. The coverage focuses on the literature published in the period 2001–2009.

Keywords: isothiazoles \cdot isothiazol-3(2H)-ones \cdot dipolar cycloadditions \cdot nitrile sulfides \cdot $macrocycles \cdot cyclization \cdot coupling reactions \cdot rearrangements$

– р 249 — 2010 **Benzisothiazoles 11.16.**3 M. Sainsbury

This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the syntheses of 1,2-benzisothiazoles (benzo[d]isothiazoles) and related compounds such as 2,1-benzisothiazoles (benzo[c]isothiazoles) and other heteroannulated derivatives, including 2-arylisothiazolo[5,4-b]pyridin-3(2H)-ones. New routes to 1,2-benzisothiazoles involve the intermolecular cyclizations of benzyne (generated in situ) with nitriles sulfides. Developments in approaches to 1,2-benzisothiazol-3(2H)ones are also described.

Keywords: 1,2-benzisothiazoles · 2,1-benzisothiazoles · saccharin · 1,3-dipolar addition · cyclization · cycloaddition · annulation · Suzuki coupling

– p 267 — **2010 11.17.**6 **Thiazoles**

P. A. Koutentis and H. A. Ioannidou

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of aromatic thiazoles and the tautomers of heterosubstituted thiazoles. It focuses on the literature published in the period 1999–2009.

Keywords: thiazoles · ring closure · aromatization · ring transformation · substituent modification

2010 p 393 —

11.18.5 Benzothiazoles

H. Ulrich

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of benzothiazoles. Recent interest in this area has in part been generated by the discovery that some 2-(aminophenyl)benzothiazoles, in particular, possess potent anticancer and other biological activities.

Keywords: benzothiazoles \cdot 2-aminobenzenethiols \cdot *N*-phenylthioamides \cdot oxidative cyclization \cdot solid-phase synthesis

11.20.3 Isoselenazoles
K. Shimada

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of isoselenazoles. It focuses on the literature published in the period 2002–2009.

Keywords: isoselenazoles \cdot 4,5-diarylisoselenazoles \cdot 3-(trihalomethyl)isoselenazoles \cdot isoselenazole-3-carboxylic acids \cdot 3,5-disubstituted isoselenazoles \cdot bis(N,N-dimethylcarbamoyl) diselenide \cdot ring closure \cdot cyclization \cdot substituent modification

Abstracts XVII

11.21.5 Annulated Isoselenazole Compounds

K. Shimada

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of annulated isoselenazole compounds. It focuses on the literature published in the period 2002–2009.

Keywords: 1,2-benzisoselenazoles \cdot 1,2-benzisoselenazol-3(2*H*)-ones \cdot *N,N'*-dialkylisophthalamides \cdot ring closure \cdot *ortho*-metalation \cdot selenation \cdot oxidation

2010 p 417 — 11.22.4 **Selenazoles**

K. Shimada

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of selenazoles. The synthesis of selenazoles by ring construction using selenocarbonyl compounds, such as selenoamides and selenoureas, is reported.

Keywords: selenazoles · ring closure · substituent modification · side-chain modification · dithioimidocarbonates · selenoamides · selenoureas · α -halo ketones · α -halo acetonitriles · selenazadienes · benzylic oxidation

2010 p 455 —

11.23.3 Annulated Selenazole Compounds

K. Shimada

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of annulated selenazole compounds. It focuses on the literature published in the period 2002–2009.

Keywords: benzoselenazoles \cdot 2-halophenyl isocyanides \cdot annulation \cdot ring closure \cdot substrate modification \cdot [1,3]selenazolo[4,5-d]triazines \cdot selenazole-5-carbonitriles \cdot benzoselenazol-3-ium salts \cdot benzoselenazole-1,7-diones \cdot squarylium dyes \cdot azo dyes

11.25.4 Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds

K. Shimada

This manuscript is an update to the earlier *Science of Synthesis* contribution describing methods for the synthesis of isotellurazoles, and annulated isotellurazole and tellurazole compounds. It focuses on the literature published in the period 2002–2009. An efficient, one-pot procedure for the preparation of 3,5-disubstituted isotellurazoles from alkynones and bis(*N*,*N*-dimethylcarbamoyl) ditelluride is reported.

Keywords: isotellurazoles \cdot isotellurazole *Te*-oxides \cdot benzotellurazoles \cdot cyclization \cdot ring closure \cdot deoxygenation \cdot ortho-metalation \cdot telluration \cdot oxidation

Abstracts XIX

2010 p 473 — Pyridopyrazines

1**6.20.**3 **Pyridopyrazines**J. Zhang

This manuscript is an update of the original *Science of Synthesis* chapter and includes methods for the preparation of pyrido[2,3-*b*]pyrazines and pyrido[3,4-*b*]pyrazines described in the literature up to 2010. Methods proceeding via condensation of pyridinediamines with carbonyl compounds and the application of halopyrido[2,3-*b*]pyrazines in palladium-catalyzed cross-coupling reactions are covered.

Keywords: pyridopyrazines \cdot ring closure \cdot condensation reactions \cdot dicarbonyl compounds \cdot cross-coupling reactions \cdot pyridinediamines

2010 p 487 — 31.4.2.2 lodoarenes S. R. Waldvogel

This manuscript is an update of the 2007 *Science of Synthesis* contribution describing methods for the synthesis of iodoarenes published in the period 2006–2010.

$$R^{1}\frac{I}{I!}$$
 $X = H, Br$

Keywords: iodination \cdot iodine \cdot iodo compounds \cdot phenols \cdot napthoquinones \cdot benzoquinones \cdot halodecarboxylation \cdot fluorine compounds \cdot electrophilic aromatic substitution \cdot aryl compounds \cdot halogenation \cdot activation of C—H bonds \cdot acid halides