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Methylation of organic molecules is increasingly emerging 
as a very useful structural modification and biological pro-
filing strategy in the rational design of bioactive compounds 
and drugs. In fact, a relatively subtle structural modification 
stemming from the introduction of a methyl group has the 
potential to strongly alter both pharmaco-dynamic and phar-
maco-kinetic profiles of a drug candidate, as a consequence 
of changes in its stereo-electronic properties. According to 
Professor Shannon Stahl, from the University of Wisconsin-
Madison (USA), methylated building blocks are a staple of 
medicinal chemistry library designs. “For example,” explained 
Professor Stahl, “when an amine building-block is chosen to 
be included in a screening library, it is likely that various me-
thylated analogues of that building-block will also be evalu-
ated, if they are commercially available. The introduction of 
a methyl group can significantly affect the properties of the 
resulting drug lead. There are cases where the installation of 
a methyl group results in thousand-fold improvements in po-
tency or results in defining drops in toxicity.” Despite the im-
portance of testing the outcome of introducing a methyl group 
at a C–H site, synthetic options are limited. Conventionally, 
‘magic methyl’ effects are uncovered by screening methyl
ated building blocks or by rerouting syntheses to incorporate 
a methyl group at an early stage. State-of-the-art protocols for 
C–H methylation are still encumbered by the use of directing 
groups or unsafe high-reactivity reagents. “My student Aris 
Vasilopoulos conceived a general C–H methylation strategy 
that features a ‘radical relay’ approach based on Kharasch–
Sosnovsky C–H functionalization methods. These methods 
use a transition-metal catalyst and a peroxide-based oxidant,” 
noted Professor Stahl.

Professor Stahl and Dr. Vasilopoulos, who led the experi-
mental studies, began studying Kharasch–Sosnovsky-type re-
actions in the context of Cu-catalyzed benzylic C–H arylation 
using di-tert-butyl peroxide with aryl boronate esters. Aris ex-
plained, “These studies revealed a means to convert C–H into 
C–C bonds, but also highlighted a problem with C–H substrate 
conversion.” He continued: “Under the 90 °C reaction tempe-
rature, low conversion of C–H substrate was observed, which 
led to solvent-level use of the C–H substrate, which would not 
be amenable to application on valuable drug-like compounds. 
We postulated that the tert-butoxyl radical formed from per-

oxide activation was competitively undergoing β-scission to 
form methyl radical and acetone, that was preventing efficient 
C–H substrate activation by hydrogen-atom transfer (HAT).” 
Literature studies from the 1960s by Wagner supported this 
hypothesis and revealed that HAT is more favorable at reduced 
temperatures. Other studies revealed that the peroxide could 
be activated at these reduced temperatures by using a pho-
tosensitizer with light. Professor Stahl noted that if the C–H 
substrate could be activated with limiting C–H substrate in the 
presence of a transition metal that can methylate the resulting 
intermediate, a new methylation reaction could be identified. 
This set of hypotheses set the stage for high-throughput expe-
rimentation efforts, led by Dr. Vasilopoulos at Merck’s labora-
tories in Kenilworth, NJ (USA).

At Merck, Dr. Vasilopoulos screened a wide range of reac-
tion parameters such as metal salts, ligands, photocatalysts, 
light sources, peroxides, acid and base additives, methyl sour-
ces, and solvents in 96-well arrays in search of an initial hit. 
In the first two-week Merck visit, nearly 1000 reactions were 
tested, but almost all of them showed no conversion of star-
ting material. Dr. Vasilopoulos explained: “The reaction con-
ditions that did show conversion either had 1–10% conversion 
to a possible methylated product or had conversion to a C–H 
oxygenation product (usually observed with tert-butyl hydro-
peroxide). One photocatalyst that showed 1–10% conversion 
of C–H substrate in these tests was Ir[dF(CF3)ppy]2

tBubpyPF6 
and, coincidentally, I found an unopened vial of 100 mg of this 
compound underneath my bench at UW-Madison.” Testing 
this photocatalyst under relevant conditions with di-tert-
butyl peroxide at UW-Madison led to a confirmed hit for 10% 
yield of methylation of ethylbenzene to cumene to be identi-
fied, with >50% conversion of the starting material. This reac-
tion hit was then optimized for one substrate at Merck, using 
over ~2000 reactions, and then optimized in parallel for 8–12 
other drug-like substrates, using over another 1000 reactions, 
to arrive near the final conditions published in the paper. Pro-
fessor Stahl elaborated: “Mechanistic studies were then con-
ducted to untangle the role of each reaction component as it 
relates to either HAT, β-scission, and/or C–C bond formation.”

“The C–H activation reactivity allowed by photoactivation 
of di-tert-butyl peroxide is remarkably robust and tolerant of 
diverse functionality,” said Professor Stahl, who continued: 
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“It is possible that this platform can be used to enable other 
‘radical relay’ C–H functionalization reactions, such as other 
alkylation reactions.” The identified methylation reaction 
conditions have been efficacious for methylation of several 
lead compounds. “Hopefully, it is only a matter of time before 
the reaction leads to identification of a ‘magic methyl’ effect in 
a bona fide drug lead,” noted Professor Stahl.

Professor Stahl concluded: “Ultimately, this reaction 
offers a practical one-step non-directed late-stage C(sp3)–H 
methylation reaction that uses all commercially available 
reagents. These features offer considerable advantages over 
other existing methods and should facilitate uptake by other 
researchers.”
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Scheme 1 The reported methylation and its key reaction features
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