SYNLETT Special Issue: The Power of Transition Metals: An Unending Well-Spring of New Reactivity
We are pleased to present the SYNLETT Special Issue The Power of Transition Metals: An Unending Well-Spring of New Reactivity in honor of Prof. Barry Trost and 20 Years of the Thieme reference work Science of Synthesis.
Read the preface by guest editor Gary A. Molander here.
Moreover, these two highlights are freely available:
Palladium-Catalyzed Functionalization of Olefins and Alkynes: From Oxyalkynylation to Tethered Dynamic Kinetic Asymmetric Transformations (DYKAT)
This review presents an account of the palladium-catalyzed functionalizations of alkenes and alkynes developed at the Laboratory of Catalysis and Organic Synthesis (LCSO). Starting from the intramolecular oxy- and aminoalkynylation of alkenes, tethered methods were then developed to functionalize allylic amines and alcohols, as well as propargylic amines. Finally, a new dynamic kinetic asymmetric transformation was developed based on the use of a ‘one-arm’ Trost-type ligand, giving access to enantiopure amino alcohols.
Read the full article here.
Advances in Internal Plasticization of PVC: Copper-Mediated Atom-Transfer Radical Polymerization from PVC Defect Sites to Form Acrylate Graft Copolymers
Internally plasticized PVC copolymers were prepared by grafting PVC with butyl acrylate and 2-(2-ethoxyethoxy)ethyl acrylate by atom-transfer radical polymerization, resulting in well-behaved polymers with a wide range of glass transition temperatures (–54 °C to 54 °C). When the grafted side chains made up more than 50% of the polymer by weight, the glass transition temperatures were below 0 °C. The covalent attachment of the plasticizing grafts requires one simple procedure starting from commercial PVC, making this strategy an industrially relevant and environmentally friendly alternative to the use of conventional small-molecule plasticizers.
Read the full article here.
Click here for the full issue: The Power of Transition Metals: An Unending Well-Spring of New Reactivity